Une startup IA nommée Axiom vient de résoudre quatre problèmes mathématiques non résolus depuis des années, en combinant des grands modèles de langage avec un système de vérification formelle. Les preuves, publiées sur arXiv en février 2026, marquent une avancée significative dans le raisonnement mathématique automatisé, sans toutefois solutionner les énigmes les plus célèbres.
AxiomProver : fusionner le créatif et le vérifiable
Axiom, cofondée par Carina Hong, s’appuie sur une technologie appelée AxiomProver, qui repose sur un principe direct : combiner la capacité créative des grands modèles de langage avec la rigueur mathématique d’une vérification formelle.
Le système opère en deux temps. D’abord, les LLM proposent des approches novatrices pour résoudre un problème. Ensuite, chaque étape est vérifiée avec Lean, un langage mathématique formel qui garantit l’absence d’erreur logique.
À la différence des outils traditionnels de recherche mathématique, AxiomProver ne se contente pas de proposer des solutions : il les valide de manière irréfutable, ligne par ligne.
Ken Ono, mathématicien collaborant avec Axiom, résume : « C’est un nouveau paradigme pour prouver les théorèmes. »
Le problème Chen-Gendron : cinq ans d'impasse résolu en un jour
En janvier 2026, le mathématicien Dawei Chen assistait à une conférence à Washington, DC. Depuis cinq ans, lui et son collègue Quentin Gendron travaillaient sur une question de géométrie algébrique différentielle—une formule de théorie des nombres qui les bloquait.
Lors de la conférence, Chen a mentionné le problème à Ken Ono. Le lendemain, Ono revint avec une solution générée par AxiomProver.
L'élégance d'une connexion inédite
La preuve révélait une connexion élégante avec un phénomène numérique découvert au XIXe siècle. Les détails, validés formellement en Lean, ont été publiés sur arXiv le mois suivant (référence : 2602.03722).
L'IA comme partenaire, non comme remplaçant
Cette anecdote illustre un changement profond : l’IA n’élimine pas le mathématicien ; elle devient son collaborateur. Comme l’explique Chen : « Les mathématiciens n’ont pas oublié les tables de multiplication après l’invention de la calculatrice. Je crois que l’IA servira comme un outil intelligent novateur—ou peut-être un “partenaire intelligent” serait plus juste—ouvrant des horizons plus riches et plus larges à la recherche mathématique. »
La conjecture de Fel : une résolution autonome
L’un des résultats les plus significatifs d’Axiom concerne la conjecture de Fel, une énigme liée aux syzygies—des expressions mathématiques abstraites en algèbre.
Le point remarquable : AxiomProver l’a résolue entièrement sans supervision humaine.
Les échos de Ramanujan
Cette conjecture trouve ses origines dans les formules historiques de Srinivasa Ramanujan, mathématicien indien mort en 1920. Les travaux de Ramanujan, compilés dans des carnets énigmatiques, continuent d’inspirer les chercheurs plus d’un siècle après.
Que l’IA soit capable d’étoffer cet héritage et de valider une conjecture complexe illustre comment la machine peut explorer des territoires mathématiques jusque-là inaccessibles.
Jugement de la communauté
Scott Kominers, chercheur en économie à Harvard Business School qui suit l’évolution des outils mathématiques assistés par IA, salue cette prouesse : « Même en tant que quelqu’un qui observe l’évolution des outils mathématiques IA depuis des années et qui les utilise moi-même, je trouve cela assez stupéfiant. Ce n’est pas juste qu’AxiomProver ait réussi à résoudre un problème entièrement de façon autonome et instantanément vérifié—ce qui en soi est remarquable—mais aussi l’élégance et la beauté des mathématiques produites. »
Axiom a soumis cette preuve sur arXiv (référence : 2602.03716).
Deux autres problèmes résolus
Axiom a également résolu deux problèmes supplémentaires : un modèle probabiliste en théorie des nombres et une application des outils historiquement développés pour attaquer le Dernier Théorème de Fermat.
Aucun de ces résultats ne solutionne les grandes énigmes non résolues de la mathématique (Fermat, Riemann, P versus NP). Chacun représente néanmoins une validation de la méthode AxiomProver sur des problèmes authentiques et non triviaux.
S'inscrire dans une tendance d'accélération
Axiom n’est pas la première organisation à explorer l’intersection entre IA et preuves mathématiques. En 2024, AlphaProof (Google) a remporté des médailles d’or aux Olympiades internationales de mathématiques. Deux ans plus tard, AxiomProver résout des problèmes de recherche en cours.
Carina Hong, CEO d’Axiom, précise que son système intègre « plusieurs avances significatives et des techniques plus récentes ». Les détails techniques spécifiques ne sont pas encore publiquement dévoilés.
Cette succession de jalons indique une accélération dans le raisonnement symbolique assisté par machine. Le changement n’est plus académique : il touche maintenant des problèmes de recherche en cours, ouvrant la porte à des collaborations durables entre humains et systèmes IA.
Cas d'usage et implications commerciales
Axiom envisage des applications au-delà de la mathématique pure. Deux domaines retiennent l’attention de Hong : la cybersécurité et la vérification de code.
Dans un contexte où les failles de sécurité coûtent des milliards, disposer d’un outil capable de valider formellement l’intégrité d’une suite logicielle—ligne par ligne, sans erreur possible—représenterait une valeur immense.
Hong souligne : « Les maths sont vraiment le grand terrain d’essai et le bac à sable pour la réalité. Nous croyons sincèrement qu’il existe de nombreux cas d’usage vraiment importants avec une valeur commerciale élevée. »
Reste que ces applications demeurent des hypothèses pour l’heure. Le modèle commercial d’Axiom, son montant de financement et le calendrier de mise à marché ne sont pas documentés publiquement.
Les preuves restent des préprints
Les quatre preuves publiées sur arXiv sont des préprints. Bien que validées formellement par Lean et endorsées par des mathématiciens éminents, elles n’ont pas encore traversé le processus classique d’évaluation par les pairs dans une revue scientifique.
Ce processus, qui peut prendre des mois ou des années, constitue le filtre final pour établir la légitimité académique d’une découverte. Cela n’invalide nullement les résultats d’Axiom—les preuves formelles en Lean offrent un degré de certitude très élevé—mais inscrit ces solutions dans un contexte de recherche en cours, non définitif.
L'IA comme amplification
Les succès d’Axiom suggèrent que l’IA n’est plus confinée à des domaines où l’intuition et le pattern-matching suffisent. Le raisonnement rigoureux, formel et vérifiable—autrefois le bastion exclusif des mathématiciens humains—peut désormais être étendu et amplifié par des systèmes automatisés.
Ce ne sera probablement pas une substitution, mais une augmentation. Les mathématiciens de demain utiliseront l’IA comme les astronomes utilisent les télescopes : non pas pour ne pas regarder le ciel, mais pour voir plus loin et plus précisément.
Les résultats d’Axiom constituent une première preuve convaincante de cette possibilité.
FAQ
Comment fonctionne AxiomProver pour résoudre des problèmes mathématiques ?
AxiomProver opère en deux temps. D’abord, les LLM proposent des approches novatrices pour résoudre un problème. Ensuite, chaque étape est vérifiée avec Lean, un langage mathématique formel qui garantit l’absence d’erreur logique.
Qu'est-ce que la vérification formelle en Lean et pourquoi est-elle importante ?
Lean est un langage mathématique formel qui valide les preuves ligne par ligne de manière irréfutable. Elle est importante car elle offre un degré de certitude très élevé, contrairement aux méthodes traditionnelles qui peuvent contenir des erreurs logiques.
Axiom a-t-il résolu les grands problèmes mathématiques (Riemann, P vs NP) ?
Non. Aucun des résultats d’Axiom ne solutionne les grandes énigmes non résolues de la mathématique comme Fermat, Riemann ou P versus NP. Chacun représente néanmoins une validation sur des problèmes authentiques et non triviaux.
Quelles sont les applications commerciales possibles de cette technologie ?
Axiom envisage deux domaines : la cybersécurité et la vérification de code. Un outil capable de valider formellement l’intégrité d’une suite logicielle ligne par ligne représenterait une valeur immense dans un contexte où les failles de sécurité coûtent des milliards.
Les preuves d'Axiom ont-elles été validées par la communauté académique ?
Les quatre preuves sont des préprints publiés sur arXiv. Bien que validées formellement par Lean et endorsées par des mathématiciens éminents, elles n’ont pas encore traversé le processus classique d’évaluation par les pairs dans une revue scientifique.
Leave a Reply